

Mark Scheme (Results) January 2011

GCE

GCE Statistics S1 (6683) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code UA026664 All the material in this publication is copyright © Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$S_{ll} = 327754.5 - \frac{4027^2}{50} = 3419.92$ $S_{lw} = 29330.5 - \frac{357.1 \times 4027}{50} = 569.666$	M1 A1 A1 (3)
(b)	$r = \frac{569.666}{\sqrt{3419.92 \times 289.6}} = 0.572$ awrt 0.572 or 0.573	M1 A1 (2)
(c)	As the length of the salmon increases the weight increases	B1ft (1) [6]
	Notes	
(a)	M1 for at least one correct expression 1^{st}A1 for $S_{ll} = \text{awrt } 3420$ (Condone $S_{xx} = \dots$ or even $S_{yy} = \dots$) 2^{nd}A1 for $S_{lw} = \text{awrt } 570$ (Condone $S_{xy} = \dots$)	
(b)	M1 for attempt at correct formula. Must have their S_{ll} , S_{lw} and given S_{ww} in the correct places If S_{ll} , S_{lw} are correct and an answer of awrt 0.57 is seen then award N M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$	M1A0
(c)	$\sqrt{327/54.5 \times 289.6}$ B1ftfor a comment mentioning "length" and "weight", not just <i>l</i> and <i>w</i> , and the idea of longer salmon weighing more. e.g. "positive correlation between weight and length" is B0 since the idea of positive correlation is not explained. Allow "larger" instead of "heavier" or "longer" Ignore any spurious values mentioned such as 0.572 If their <i>r</i> is negative (but must be $r > -1$) ft an appropriate comment. Condone $r > 1$ if comment is correct. If $ r < 0.4$ allow a comment of no or little relationship between weight and length but for $0 < r < 0.4$ the printed answer is still acceptable too.Treat mention of "skewness" as ISW if a correct interpretation is given	

Question Number	Scheme	Marks
2. (a)	2.8 + 5.6 + 2.3 + 9.4 + 0.5 + 1.8 + 84.6 = 107 mean = 107 / 28 (= 3.821) (awrt 3.8)	M1 A1 (2)
(b)	It will have no effect since one is 4.5 under what it should be and the other is 4.5 above what it should be.	B1 dB1 (2) [4]
	Notes	
(a)	M1 for a clear attempt to add the two sums. Accept a full expression or 2.8 + 5.6 + + 84.6 = x where $100 < x < 110i.e. seeing at least two correct terms of Keith's and the 84.6 with a slip.A1 for awrt 3.8 (Condone 1 dp/2sf here since data is given to 1 dp or 2 sf)Accept \frac{107}{28} or 3\frac{23}{28} or any exact equivalent$	
	Correct answer implies M1A1	
(b)	 1st B1 for clearly stating that it will have no effect. ("roughly the same" is B0 2nd dB1 for a supporting reason that mentions the fact that the increase and decrease and gives some numerical value(s) to support this. e.g. Sum of Keith's observations is still 22.4 (or mean is still 3.2) or Sum is still 107 or 9.4-4.9 = 5-0.5 (o.e.) This second B1 is dependent on their saying there is no effect so B0B1 	ease are the

_		_	
F	γN	Λ	Т
•			•

Number	Scheme	Marks	6	
3. (a)	Outliers			
()	$14 + 1.5 \times (14 - 7) = 24.5$	M1		
	$7 - 1.5 \times (14 - 7) = -3.5$	A1		
	/ 1.5 ~(1+ /) = 5.5			
	Outlier 25			
	either upper limit acceptable on diagram	M1		
		1011		
	v	A1ft		
		B1		
	0 5 10 15 20 25			
	Sales in £'000		(5)	
/৮)		B1		
(b)	Since $Q_3 - Q_2 < Q_2 - Q_1$. Allow written explanation negatively skew	dB1		
	negatively skew	UDT	(2)	
			. ,	
(c)	not true	B1		
	since the lower quartile is 7000 and therefore 75% above 7000 not 10000	dB1		
	or 10 is inside the box or any other sensible comment		(2)	
			[9]	
	Notes	I		
(a)	A fully correct box-plot (either version) with no supporting work scores 5/5	. Otherw	ise	
	read on			
	1^{st} M1 for at least one correct calculation seen 1^{st} A1 for 24.5 and -3.5 (or just negative noted) seen. May be read off the grad	nh		
	1^{st} A1 for 24.5 and -3.5 (or just negative noted) seen. May be read off the graph. If both values are seen but no calculation is given then M1A1 one value M1A0.			
	If both values are seen but no calculation is given then M1A1 one value	M1A0		
	If both values are seen but no calculation is given then M1A1, one value 2 nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va			
	If both values are seen but no calculation is given then M1A1,one value 2 nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked)			
	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off the 	lues		
	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off th If <u>both</u> upper whiskers are seen A0 	lues		
	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off th If <u>both</u> upper whiskers are seen A0 Apply ft for their <u>whiskers</u> being compatible with their <u>outlier limits</u> 	llues eir scale		
	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off th If <u>both</u> upper whiskers are seen A0 Apply ft for their <u>whiskers</u> being compatible with their <u>outlier limits</u> e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5	llues eir scale		
	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off the If <u>both</u> upper whiskers are seen A0 Apply ft for their <u>whiskers</u> being compatible with their <u>outlier limits</u> e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 	llues eir scale		
(b)	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off th If <u>both</u> upper whiskers are seen A0 Apply ft for their <u>whiskers</u> being compatible with their <u>outlier limits</u> e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 Apply <u>+</u> 0.5 square accuracy for diagram 	llues eir scale		
(b)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	llues eir scale		
(b)	 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off th If <u>both</u> upper whiskers are seen A0 Apply ft for their <u>whiskers</u> being compatible with their <u>outlier limits</u> e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 Apply <u>+</u> 0.5 square accuracy for diagram 	ilues eir scale is OK	B0	
(b)	$2^{nd} M1 \text{ for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked)}$ $2^{nd} A1 \text{ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off the If both upper whiskers are seen A0 Apply ft for their whiskers being compatible with their outlier limits e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 \frac{\text{Apply} \pm 0.5 \text{ square accuracy for diagram}}{1^{\text{st}} B1 \text{ for } Q_3 - Q_2 < Q_2 - Q_1 \text{ statement or an equivalent statement in words Use of } Q_3 - Q_2 < Q_2 - Q_1 \text{ does not require differences to be seen.}$	ilues eir scale is OK ation" is I	B0	
(b)	$2^{nd} M1 \text{ for a box with an upper and a lower whisker(s) with at least 2 correct value (condone no median marked)}$ $2^{nd} A1 \text{ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off the If both upper whiskers are seen A0 Apply ft for their whiskers being compatible with their outlier limits e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 Apply ± 0.5 square accuracy for diagram 1^{st} B1 \text{for } Q_3 - Q_2 < Q_2 - Q_1 \text{ statement or an equivalent statement in words Use of } Q_3 - Q_2 < Q_2 - Q_1 \text{ does not require differences to be seen.} 2^{nd} dB1 for "negative skew" dependent on suitable reason given above. "correl "positive skew" with a supporting argument based on whiskers can scole.g. "right hand whisker is longer than LH one so positive skew"$	ilues eir scale is OK ation" is I	B0	
(b)	$2^{nd} M1 \text{ for a box with an upper and a lower whisker(s) with at least 2 correct va (condone no median marked)}$ $2^{nd} A1 \text{ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off the If both upper whiskers are seen A0 Apply ft for their whiskers being compatible with their outlier limits e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 \frac{\text{Apply} \pm 0.5 \text{ square accuracy for diagram}}{1^{\text{st}} B1 \text{ for } Q_3 - Q_2 < Q_2 - Q_1 \text{ statement or an equivalent statement in words Use of } Q_3 - Q_2 < Q_2 - Q_1 \text{ does not require differences to be seen.}$	ilues eir scale is OK ation" is I	B0	
(b)	$2^{nd} M1 \text{ for a box with an upper and a lower whisker(s) with at least 2 correct value (condone no median marked)}$ $2^{nd} A1 \text{ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off the If both upper whiskers are seen A0 Apply ft for their whiskers being compatible with their outlier limits e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 B1 for only one outlier appropriately marked at 25 Apply ± 0.5 square accuracy for diagram 1^{st} B1 \text{for } Q_3 - Q_2 < Q_2 - Q_1 \text{ statement or an equivalent statement in words Use of } Q_3 - Q_2 < Q_2 - Q_1 \text{ does not require differences to be seen.} 2^{nd} dB1 for "negative skew" dependent on suitable reason given above. "correl "positive skew" with a supporting argument based on whiskers can scole.g. "right hand whisker is longer than LH one so positive skew"$	ilues eir scale is OK ation" is I	B0	

Question Number	Scheme	Marks	
4. (a)	$b = \frac{1.688}{5.753} = 0.293$ $a = 3.22 - 4.42 \times 0.293 = 1.9231$ p = 1.92 + 0.293v	M1A1 M1 A1	(4)
(b)	$v = \frac{85-5}{10} = 8$ $p = 1.92 + 0.293 \times 8 = 4.3$ (awrt 4.3)	M1 A1	(2) [6]
	Notes		[0]
	Can ignore (a) and (b) labels here		
(a)	1 st M1 for a correct expression for <i>b</i> . $\frac{1.688}{1.168}$ is M0 1 st A1 for awrt 0.29 2 nd M1 for use of $a = \overline{p} - b\overline{v}$ follow through their value of <i>b</i> (or even just the 2 nd A1 for a complete equation with <i>a</i> = awrt 1.92 and <i>b</i> = awrt 0.293 <i>y</i> or <i>p</i> = 1.92 + 0.293 <i>x</i> is A0 Correct answer with no working is 4/4	e letter b)	
(b)	M1 for an attempt to find the value of v when $x = 85$ (at least 2 correct t $\pm \frac{85-5}{10}$) <u>or</u> for an attempt to find an equation for p in terms of x and using x = Attempt at equation of p in x requires $p = 1.92 + 0.293 \frac{(x-5)}{10}$ A1 for awrt 4.3 (award when first seen and apply ISW) N.B. $p = 1.92 + 0.293 \times 85$ (o.e.) is M0A0		

Question Number	Scheme	Marks	
5.			
(a)			
	$\frac{x-39.5}{49.5-39.5} = \frac{16-14}{25-14} \text{ or } x = 39.5 + \left(\frac{2}{11} \times 10\right)$	M1	
	49.5 - 39.5 25 - 14 (11) Median = 41.3 (use of $n + 1$ gives 41.8) (awrt 41.3)	A1	
		(2)	
(b)	Mean= $\frac{1414}{32}$ = 44.1875 (awrt 44.2)	B1	
	Standard deviation = $\sqrt{\frac{69378}{32} - \left(\frac{1414}{32}\right)^2}$	M1	
	= 14.7 (or $s = 14.9$)	A1	
(c)	mean > median therefore positive skew	(3) B1ft B1ft	
(0)	mean > median merelore <u>positive skew</u>	(2)	
		[7]	
(a)	<u>Notes</u> M1 for an attempt to use interpolation to find the median. Condone use of	39 or 10 for 39 5	
(d)			
	e.g. allow $39 + \frac{2}{11} \times 10$ (o.e.) or $40 + \frac{2}{11} \times 10$ (o.e.) to score M1A0 but mu	st have the 10	
	A1 for awrt 41.3 (or awrt 41.8 if using $(n + 1)$)		
(b)	B1 for awrt 44.2M1 for a correct expression including square root. (Allow ft of their means)	an)	
	A1 for awrt 14.7 (If using s for awrt 14.9) $\sum_{s=1}^{n}$		
Mid-points	You may see $\sum t = 1339 \rightarrow \overline{t} = 41.8$ and $\sum t^2 = 62928 \rightarrow \sigma 14.7$ or $s = 14$		
Mid-points	this scores B0 for the mean but can score M1 for a correct st.dev expression and A1 for		
	ans. Correct answer only in (a) and (b) can score full marks but check (<i>n</i> +1) case in (a)		
(c)	1 st B1ft for a correct comparison of their mean and their median (may be in a formula) Calculating median – mean as negative is OK for this B1 but must say +ve skew for 2 nd B1		
	Only allow comparison to be ≈ 0 if $ \text{mean} - \text{median} \le 0.5$		
	 2nd B1ft for a correct description of skewness <u>based on their values of mean and median</u>. If their values for mean and median not their previous calculation/comparison Must be compatible with their previous comparison (if they have one) "Positive skew" with no reason is B0B1 provided you can see their values that imply that. Description should be "positive" or "negative" or "no" skew or "symmetric" 		
Quartiles	"Positive correlation" is B0 1 st B1ft if $Q_1 = awrt 32 and Q_3 = awrt 49$ seen and a correct comparison :	made. ft Q_2	
	2^{nd} B1ft if $Q_1 = \text{awrt } 32 \text{ or } Q_3 = \text{awrt } 49 \text{ seen and a correct description ba}$	_	
	quartiles and their comparison is made. (Should get "negative sk		

PhysicsAndMathsTutor.com

Questic Numbe	NCheme	Marks	
6.	k + 2k + 3k + 4k = 1 or 10k = 1 k = 0.1 (*) [allow verification with a comment e.g. "so k = 0.1"	B1cso	(1)
() $E(X) = 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.3 + 4 \times 0.4 = 3$	M1 A1	(2)
() $E(X^2) = 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.3 + 16 \times 0.4 = 10$	M1 A1	(2)
() $Var(X) = 10 - 9(=1)$	M1	
	$Var(2-5X) = 5^2 Var(X) = 25$	M1 A1	(3)
(P(1,3)+P(2,2)=2×0.1×0.3+0.2×0.2=0.1 (*)	M1 A1cso	(2)
($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	(2)
(P(2) + P(3) = 0.05	M1A1	
			(2) [14]

Question Number	Scheme	Marks	
	Notes		
(a)	B1 for a clear attempt to use sum of probabilities = 1. Must see previous line as well as $k = 0.1$		
	A correct expression for $E(X)$ or $E(X^2)$ that is later divided by 4 scores M0		
(b)	M1 for a completely correct expression. May be implied by correct answer of 3 or 30kA1 for 3 only.		
(c)	M1 for a completely correct expression. May be implied by correct answer A1 for 10 only.		
	[For $E(X^2) = 0.1 + 0.8 + 2.7 + 6.4 - 9 = 1$ scores M0A0 but accept this as	Var(X) in (d)]	
(d)	 1st M1 for using Var(X) = E(X²) – E(X)², f.t their values from (b) and (c) Allow this mark for Var(X) = 10−9 or better. May be implied if this is seen in (c). 2nd M1 for 5²Var(X) or 25Var(X) can f.t. their Var(X). Allow -5² if it later becomes +25 A1 for 25 only. Dependent upon both Ms Forming distribution for Y=2-5X gets M1 for E(Y²)=194 then M1A1 for 194-169=25 		
(e)	M1 for correctly identifying $(1, 3)$ or $(3, 1)$ and $(2, 2)$ as required cases $(3k^2 + 4k^2 \text{ or better})$ A1 cso for 0.1 only but must see evidence for M1		
(f)	1^{st} B1 for 0.2 correctly assigned. May be in table. 2^{nd} B1 for 0.16 correctly assigned. May be in table		
(g)	 M1 for P(2) + P(3). May be implied by correct answer of 0.05 A1 for 0.05 only. Correct answer only can score full marks in parts (b), (c), (f) a 	und (g)	

Question Number	Scheme	Marks
7. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1
	$\frac{4}{9} \qquad \qquad$	B1
	both $\frac{3}{5}, \frac{2}{5}$	B1
	$\frac{5}{9} r \left(\frac{1}{9}\right)$ all three of $\frac{4}{9}, \frac{4}{9}, \frac{5}{9}$	B1 (4)
(b)	$P(A) = P(RR) + P(YY) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times "\frac{2}{5}" = \frac{2}{5}$ B1 for $\frac{1}{2} \times \frac{2}{5}$ (oe) seen at least once	B1 M1 A1 (3)
(c)	P(B) = P(RRR) + P(RYR) + P(YRR) + P(YYR) M1 for at least 1 case of 3 balls identified. (Implied by 2 nd M1)	M1
	$\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) = \frac{5}{9} (*)$	M1,A1cso (3)
(d)	$P(A \cap B) = P(RRR) + P(YYR)$ M1 for identifying both cases and + probs. may be implied by correct expressions	M1
	$= \left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) \qquad = \frac{2}{9} (*)$	A1cso (2)
(e)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Must have some attempt to <u>use</u>	M1
	$= "\frac{2}{5}" + \frac{5}{9} - \frac{2}{9} = \frac{11}{15}$	A1cao
		(2)

Question Number	Scheme	Marks	
(f)	$\frac{P(RRR)}{P(RRR) + P(YYY)} = \frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)} = \frac{6}{11}$ Probabilities must come from the product of 3 probs. from their tree diagram.	M1 A1ft A1 cao (3) [17]	
	Notes		
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.		
(c)	2 nd M1 for all 4 correct expressions, ft their values from tree diagram. A1 is cso		
(e)	M1 for clear attempt to <u>use</u> the correct formula, must have some correct substitution. ft their (b)		
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. 1 st A1ft for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)		

Question	Scheme	Marks
Number	Scheme	IVIAI KS
8.		
(a)	$P(X > 168) = P\left(Z > \frac{168 - 160}{5}\right)$	M1
(a)	$\left(\begin{array}{c} 2 \end{array} \right) = \left(\begin{array}{c} 2 \end{array} \right)$	
	= P(Z > 1.6)	A1
	= 0.0548 awrt 0.0548	A1
	- 0.05+0 awit 0.05+0	(3)
(b)	(-w-160)	(-)
	$P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$	
		M1 B1
	$\frac{w-160}{5} = -2.3263$	
	5	A1
	w=148.37 awrt 148	(3)
(c)	160	M1
(0)	$\frac{160-\mu}{\sigma} = 2.3263$	B1
	$\frac{152-\mu}{\pi} = -1.2816$	B1
	8	
	$160 - \mu = 2.3263\sigma$	
	$152 - \mu = -1.2816\sigma$	M1
	$8 = 3.6079\sigma$	A1
	$\sigma = 2.21$ awrt 2.22 $\mu = 154.84$ awrt 155	A1 (6)
	$\mu = 154.84$ awrt 155	[12]
	Notos	[12]
(a)	<u>Notes</u> (168 160)	
(u)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm \left(\frac{168-160}{5}\right)$	or implied by 1.6
	1 st A1 for $P(Z > 1.6)$ or $P(Z < -1.6)$ ie $z = 1.6$ and a correct inequality or 1.6 diagram	on a shaded
	Correct answer to (a) implies all 3 marks	
(b)	M1 for attempting $\pm \left(\frac{w-160}{5}\right) = \text{recognizable } z \text{ value } (z > 1)$	
	B1 for $z = \pm 2.3263$ or better. Should be $z = \dots$ or implied so: $1 - 2.3263 = \frac{10}{2}$	v-160 is MOBO
	$-101 \times (-1) \times $	5
	A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible.	
	For awrt 148 only with no working seen award M1B0A1	
(c)	M1 for attempting to standardize 160 or 152 with μ and σ (allow <u>+</u>) and e	equate to z value
	(z >1)	
	$1^{\text{st}} B1$ for awrt ± 2.33 or ± 2.32 seen	
	2^{nd} B1 for awrt ± 1.28 seen 2^{nd} M1 for attempt to solve their two linear equations in u and σ leading to	a constitute in the t
	2^{nd} M1 for attempt to solve their two linear equations in μ and σ leading to	equation in just
	one variable $1^{st} \wedge 1$ for π over 2.22. Around when 1^{st} appr	
	1 st A1 for $\sigma = \text{awrt } 2.22$. Award when 1 st seen 2 nd A1 for $\omega = \text{awrt } 155$. Correct answer only for part (a) can accur all 6 m	onla
	2^{nd} A1 for μ = awrt 155. Correct answer only for part (c) can score all 6 m	
	NB $\sigma = 2.21$ commonly comes from $z = 2.34$ and usually scores M1 The A marks in (c) require both M marks to have been com-	
	The A marks in (c) require both M marks to have been ear	lieu

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA026664 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH